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FORCES ACTING ON BUBBLES I N  NUCLF,ATT BOILING UNDER 

NORMAL AND E D U C E D  GRAVITY CONDITIONS 

by Edward G. Keshock and Robert Siege1 

L e w i s  Research Center 

SUMMARY 

An experimental study w a s  made of bubble growth, departure, and r i s e  dur- 
ing  nucleate b o i l i n g  i n  s a tu ra t ed  aqueous-sucrose solutions,  ranging from 20- t o  
60-percent sucrose by weight, i n  seven d i f f e r e n t  g rav i ty  f i e l d s  from 1 . 4  t o  100 
percent of Earth grav i ty .  Resul ts  a r e  compared with s i m i l a r  da t a  from a pre- 
vious study of nucleate b o i l i n g  i n  sa tu ra t ed  d i s t i l l e d  water. I n  t h e  present  
study, t he  departure diameters unexpectedly exhibi ted no g rav i ty  dependence i n  
con t r a s t  t o  t h e  da t a  f o r  s a tu ra t ed  water where departure diameters var ied ap- 
proximately as g-1/2. The d i f f e rence  i n  behavior w a s  explained by calculat ing,  
from t h e  experimental d a t a  throughout a bubble growth period, var ious fo rces  be- 
l i e v e d  t o  influence the  bubble departure.  Departure w a s  found t o  be dependent 
on t h e  r e l a t i v e  magnitudes of the  buoyancy, i n e r t i a l ,  and surface-tension 
forces,  with the  viscous drag being of l i t t l e  s ignif icance.  The bubbles i n  su- 
crose so lu t ions  proved t o  be i n e r t i a  dominated, and hence g rav i ty  independent, 
while t h e  departure of t h e  bubbles i n  water w a s  governed by buoyancy, and hence 
g r a v i t y  dependent. The r i s e  of bubbles through t h e  l i q u i d  a f t e r  departure w a s  
analyzed, and t h e  predicted r i s e  ra tes  agreed reasonably we l l  w i t h  those ob- 
served . 

INTRODUCTION 

The advent of space t rave l  has st imulated i n t e r e s t  i n  t h e  e f f e c t s  of grav- 
i t y  on various f l u i d  mechanical and hea t - t r ans fe r  processes. One process t h a t  
would be expected t o  be g r a v i t y  dependent i s  nucleate pool b o i l i n g  i n  a sa tu-  
r a t e d  l i qu id ,  since t h e  g r a v i t a t i o n a l  buoyancy force con t r ibu te s  t o  t h e  detach- 
ment of vapor bubbles from t h e  surface and then causes them t o  r ise  through t h e  
l i qu id .  

Some recent  experiments i n  reduced g r a v i t y  f i e l d s  ( r e f s .  1 t o  3) have m e a -  
sured t h e  heat  f l u x  and t h e  temperature d i f f e rence  between a heated surface and 
l i q u i d  i n  t h e  nucleate b o i l i n g  range and have inves t iga t ed  t h e  dependence of 
t h e  c r i t i c a l  (burnout) hea t  f l u x  on gravi ty .  These experiments were l i m i t e d  by 
t h e  sho r t  durat ions of t h e  low-gravity per iod available, bu t  they d i d  ind ica t e  



some s i g n i f i c a n t  c h a r a c t e r i s t i c s .  I n  t h e  nucleate  b o i l i n g  range, t h e  curve of 
hea t  f l u x  as a funct ion of temperature d i f f e rence  w a s  found t o  be e s s e n t i a l l y  
independent of grav i ty .  The curve was s h i f t e d  wi th in  only a degree of temper- 
ature difference when g r a v i t y  w a s  va r i ed  i n  t h e  range between Earth g r a v i t y  and 
zero. The burnout hea t  f l u x  va r i ed  approximately as g r a v i t y  t o  t h e  one qua r t e r  
power as indicated by theory. 

I n  order  t o  obtain a more fundamental understanding of how reduced g r a v i t y  
inf luences t h e  nucleate b o i l i n g  process, a study of bubble dynamics i n  p a r t i a l  
g rav i ty  f i e l d s  was i n i t i a t e d  using a counterweighted drop-tower f a c i l i t y  
( r e f .  4 ) .  
f l uxes  so t h a t  only a few nucleat ion s i t e s  were a c t i v e  and individual  bubbles 
could be photographed. I n  low-gravity f i e l d s ,  t h e  nucleat ion of a s ing le  column 
of bubbles exhibi ted a c y c l i c a l  behavior as follows: A f u l l y  grown bubble would 
detach and remain close t o  the  surface because of t h e  low r i s e  ve loc i ty  i n  r e -  
duced gravi ty .  A number of bubbles i s su ing  from t h e  same nucleat ion s i t e  a r e  
then absorbed by the  detached bubble during the  e a r l y  s tages  of t h e i r  growth. 
A s  t he  vapor mass formed by t h e  coalescence of t hese  bubbles moves slowly up- 
ward, it eventually r i s e s  s u f f i c i e n t l y  fa r  above t h e  surface t h a t  t h e  next bub- 
b l e  formed does not j o i n  with it and the  cycle i s  then repeated. Hence, i n  
low-gravity nucleate boi l ing ,  t h e  vapor m a s s ,  which tends t o  remain near t h e  
surface, serves as a means f o r  removing subsequent bubbles from t h e  surface 
while they a r e  s t i l l  very s m a l l .  This bubble removal would tend t o  increase t h e  
bubble frequency and turbulence near t he  surface and thereby maintain a high 
hea t - t r ans fe r  coe f f i c i en t .  The tendency of vapor t o  l i n g e r  near t he  surface, 
however, probably accounts f o r  t he  lowering of t h e  c r i t i c a l  (burnout) hea t  flux. 

Boil ing took place from a polished ho r i zon ta l  surface a t  low hea t  

The reduction of buoyant fo rces  i.n reduced g rav i ty  has d i r ec t ed  increased 
a t t e n t i o n  t o  t h e  other  forces ,  such as surface t ens ion  and i n e r t i a l ,  t h a t  might 
assume g r e a t e r  s ignif icance.  This reduct ion has been discussed i n  references 
3, 5, and 6, where t h e  i n e r t i a l  and buoyancy fo rces  were evaluated by u t i l i z i n g  
a t h e o r e t i c a l  expression f o r  t h e  bubble growth r a t e  such as given i n  r e f e r -  
ence 7. I n  reference 3, t he  Froude number, which i s  t h e  r a t i o  of i n e r t i a l  t o  
buoyancy force,  was computed f o r  a s ing le  bubble under normal g rav i ty  conditions 
and found t o  vary from 452 f o r  l i q u i d  ni t rogen t o  14,000 f o r  water f o r  repre- 
s en ta t ive  values of bubble s i z e  and surface superheat. This would imply t h a t  
t he  i n e r t i a l  fo rce  would be s t rongly dominating i n  t h e  bubble dynamics. I n  r e f -  
erence 6, however, a s i m i l a r  d iscussion of t h e  Froude number, which used t h e  
da t a  of reference 1, ind ica t ed  t h a t  f o r  bubbles i n  water under both normal and 
reduced g rav i ty  conditions t h e  i n e r t i a  and buoyancy were of t h e  same order  of 
magnitude. Chun ( r e f .  8 )  obtained measurements of bubbles and computed buoyancy 
and surface-tension fo rces  f o r  b o i l i n g  sa tu ra t ed  water under normal g rav i ty  con- 
d i t i ons .  H i s  r e s u l t s  i nd ica t ed  a ne t  upward fo rce  a c t i n g  on the  bubbles during 
growth. Hence, bubble departure was not bel ieved t o  be governed by an equ i l ib -  
r i u m  of t hese  forces.  The i n e r t i a l  force was not considered. 

The purpose of t h e  present  work was t o  ob ta in  d e t a i l e d  photographs of in -  
dividual  bubbles i n  nucleate b o i l i n g  f o r  reduced g r a v i t y  conditions, and t o  com- 
pute from t h e  bubble dimensions throughout t h e  growth per iod the  magnitudes of 
t h e  fo rces  t h a t  might s i g n i f i c a n t l y  influence bubble departure. This approach 
i s  i n  con t r a s t  with t h e  previously mentioned t h e o r e t i c a l  discussions i n  which 
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t h e  f o r c e s  were computed from growth r e l a t i o n s  that represent  physical  behavior 
only i n  an average way and hence may obscure some fea tu res .  For example, i n  
references 4 and 9, it i s  experimentally determined t h a t  t h e  bubble growth i n  
t h e  e a r l y  s tages  could be much more r a p i d  than t h a t  predicted by e x i s t i n g  

might t ear  t h e  bubble away from t h e  surface before  it grew very la rge .  I n  t h i s  
s i t ua t ion ,  t h e  buoyancy f o r c e s  would not be important, and t h e  detachment of 
ubbles would be i n s e n s i t i v e  to gravi ty .  Conversely, f o r  a slowly growing bub- 

I t heo r i e s .  This higher growth r a t e  could produce a high i n e r t i a l  fo rce  t h a t  

I 1 "  b le ,  t h e  i n e r t i a l  fo rces  w i l l  be s m a l l ,  and the bubble detachment w i l l  depend '! 
on an equilibrium between buoyancy and surface-tension forces .  This w i l l  be a 

' grav i ty  dependent s i t u a t i o n .  Experimental r e s u l t s  f o r  bo th  of t hese  types of 
bubbles w i l l  be presented, and t h e  fo rces  a c t i n g  on them discussed and i n t e r -  
p re t ed  i n  r e l a t i o n  t o  the observed e f f e c t s  of g rav i ty  on bubble departure. 

After  detachment, t h e  removal of t h e  vapor from t h e  v i c i n i t y  of t h e  sur- 
f ace  depends on the  buoyancy and drag forces .  Some d a t a  on t h e  bubble r i s e  
a f t e r  detachment w j . 1 1  be presented f o r  s eve ra l  reduced g rav i ty  f i e l d s  and com- 
pared w i t h  theory. 

A motion-picture f i lm showing b o i l i n g  i n  normal and i n  reduced g rav i ty  of 
water, 60-percent aqueous-sucrose solution, and e t h y l  alcohol has been prepared 
and i s  available on loan. A request  card and a desc r ip t ion  of t h e  f i l m  a r e  
given at the  back of t h i s  r epor t .  

SYMBOLS 

'd 

D 

% 
E'd 

F 

g 

m 

pb 

J% 

R e  

T 

drag coe f f i c i en t  

bubble diameter 

contact c i r c l e  diameter (width of bubble base)  

E'dtv'ds number 

fo rce  

g r a v i t a t i o n a l  f i e l d  

apparent mass of bubble 

pressure outs ide bubble a t  i t s  base 

pressure in s ide  bubble a t  i t s  base 

hea t  t r a n s f e r r e d  pe r  u n i t  area and time from s o l i d  surface t o  b o i l i n g  
l i q u i d  

Reynolds number 

temperature 
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m 

t 

U 

uO 

X 

Y 

0 

P 

P 

0 

temperature difference,  Tw - Tsat  

t i m e  

ve l o  c i t y  

bubble r i s e  v e l o c i t y  immediately following departure 

v e r t i c a l  d i s t ance  from heated surface to bubble cen te r  of g r a v i t y  

r ad ius  of curvature of bubble p r o f i l e  a t  i t s  base 

contact  angle between bubble and heated surface 

dynamic v i s c o s i t y  

den s i  t y  

surface t ens ion  

Subscripts:  

bu 

d 

i 

1 

n 

0 

r 

S 

sat 

v 

W 

buoyancy 

drag 

i n e r t i a l  

l i q u i d  

normal (Ea r th )  g r a v i t y  

a t  detachment 

r i s i n g  through l i q u i d  

sur f  ace t ens ion  

s a t u r a t i o n  

vapor 

sur f  ace 

Forces Acting on Bubbles During Growth 

I n  t h i s  s ec t ion  t h e  expressions to be used f o r  computing t h e  f o r c e s  a c t i n g  
The bubbles obtained i n  on a growing bubble are der ived and b r i e f l y  discussed. 

t h e  present  experimental study were very nea r ly  sphe r i ca l  as shown by the  con- 
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t ou r s  reproduced i n  f igu re  4 (p.  15). Hence, a p e r f e c t l y  spherical  bubble model 
w a s  assumed i n  der iving expressions f o r  t he  i n e r t i a l  and drag forces  and f o r  
p a r t  of t he  buoyancy force.  

I n e r t i a .  - The i n e r t i a l  force  developed during the growth of a bubble i s  
pr imari ly  the  r e s u l t  of pu t t ing  the  surrounding f l u i d  i n t o  motion. According 
to reference 10, t he  apparent mass of t he  a f fec ted  f l u i d  i s  t h a t  occupied by 
11/16 of t he  bubble volume. The acce lera t ion  of t he  f l u i d  i s  approximated as 
i n  references 5 and 6 by t h e  time r a t e  of change of t he  bubble growth veloci ty  
where the  ve loc i ty  i s  the  change of rad ius  with time. Then 

F. = -  d (mu) = -  d [(II --- pZ flE3) - -  ; E] 
1 d t  d t  1 6  gn 

which can be rewr i t ten  i n  the  f i n a l  form 

Evaluating Fi a n a l y t i c a l l y  requi res  an expression f o r  the  bubble growth D ( t ) .  
Several  analyses have yielded growth expressions o t he  form D - tn, with the  

tha t  depends on the  p a r t i c u l a r  physical  conditions.  Experimentally, however, 
as i n  references 4 and 9, n 
ea r ly  s tages  of growth and then decreases to approximately 1/3 i n  the  l a t e r  
stages.  The ana lys i s  of F o r s t e r  ( r e f .  11) p r e d i c t s  a change i n  n from 1/2 to 
1 / 4  during bubble growth and hence agrees q u a l i t a t i v e l y  with the  experimental 
behavior. The value of n i s  very important as a s m a l l  d i f ference i n  n can 
have a very la rge  e f f e c t  on F i  computed from equation (1). For example, i f  n 
i s  assumed to be constant with time and equal to 1/2, t h  
dependent of time, while i f  n = 3/8,  Fi v a r i e s  as t-172, and i f  n = 1/4, the  
i n e r t i a l  force becomes zero. Since experiments y i e l d  a range of bubble growth 
curves, character iz ing the  bubbles by a s ingle  type of i n e r t i a l - f o r c e  v a r i a t i o n  
w i t h  time does not seem reasonable. 

most simple expressions being of the  type D = et1 P ', where c i s  a constant 

ranges from approximately 1/2 to 1 during the 

i n e r t i a l  force i s  i n -  

The approach i n  the  present repor t  i s  to evaluate  the  i n e r t i a l  force from 
measurements of spec i f i c  bubbles so t h a t  comparisons can be made with the  buoy- 
ancy and surface-tension forces  obtained from the  same bubbles. 
evaluat ion of equation (1) d i r e c t l y  from bubble diameter measurements i s  impos- 
s i b l e  p r i n c i p a l l y  because the  unavoidable s c a t t e r  of t h e  da ta  poin ts  would pro- 
duce la rge  e r r o r s  i n  the  second der iva t ive  term d2D/dt2. Hence, t he  following 
procedure w a s  u t i l i z e d .  A smooth curve f o r  D as a funct ion of t w a s  drawn 
through t h e  measurements taken from a s ingle  bubble. Then approximately 100 
poin ts  were read from the  curve and used i n  a l e a s t  squares d i g i t a l  computer 
program to f i t  a s ixth-order  polynomial t o  the  points.  Sometimes it w a s  neces- 
sary to f i t  a separate polynomial to each of two or th ree  curves obtained by 
dividing the  o r i g i n a l  curve i n t o  overlapping segments. After  a polynomial had 
been obtained, r e s u l t s  were evaluated from equation (1) by d i f f e r e n t i a t i n g  the  
polynomial a n a l y t i c a l l y  as required.  

An accurate 
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Buoyancy. - The buoyancy force i s  equal t o  t h e  i n t e g r a l  over the bubble 
surface of t h e  v e r t i c a l  component of t h e  hydros ta t ic  pressure force.  For an  
unattached spher ica l  bubble t h i s  i n t e g r a t i o n  would y i e l d  simply 

When a bubble i s  at tached t o  a surface, however, t he  buoyancy force must be 
modified t o  account f o r  t h e  pressures  ac t ing  on the  base area.  The a d d i t i o n a l  
term t h a t  a r i s e s  w a s  considered i n  reference 12,  where it w a s  combined with the  
surface-tension force  a t  
included i n  the  buoyancy 
reference 13. With t h i s  
a t tached bubble i s  given 

%U 

t h e  bubble base r a t h e r  than more appropriately being 
force.  The d e t a i l s  of t he  evaluat ion a re  given i n  
addi t iona l  term included, t he  buoyancy force  f o r  an 
by 

The pressure difference a t  t h e  bubble base 
the  p r i n c i p a l  r a d i i  of curvature as 

q, - Pb can be w r i t t e n  i n  terms of 

2 0  s i n  8 + CT - 
Db Y p b - P b =  ( 3 )  

A d i f f i c u l t y  i n  the  evaluat ion of equation ( 3 )  i s  t h a t  accurate  measurements of 
t he  radius  of curvature y of the  bubble p r o f i l e  a t  the base a re  inherent ly  
d i f f i c u l t  t o  obtain. The bubble p r o f i l e s  general ly  become l e s s  curved near t he  
surface,  however, p a r t i c u l a r l y  i n  the  l a t e r  s tages  of growth. Consequently, 
the  radius  of curvature a t  the  bubble base i s  s i g n i f i c a n t l y  l a r g e r  than the  
bubble radius,  making the  second term on the  r i g h t  of equation (3 )  small com- 
pared with the  f i r s t  term. Hence, as a n  approximation, the  o/y term w i l l  be 
neglected here. Then equation ( 2 )  becomes 

The second term on the  r i g h t  i s  equal t o  one-half the  surface-tension force,  as 
w i l l  be shown by equation (5) .  
p r i n c i p a l  r a d i i  of curvature a re  D/2.  This assumption y i e l d s  p, - Pb = 40/D, 
which seems too la rge  i n  view of t he  preceding discussion. 

I n  reference 8, it i s  assumed t h a t  both of the  

Surface tension. - The i n e r t i a l  and buoyancy forces  a r e  balanced by the  
surface-tension force,  which holds the  bubble base t o  the  surface.  The surface- 
tension force i s  given by 

Fs = s i n  0 (5)  
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- Drag. - Only a very rough estimate of t he  drag force f o r  a growing bubble 
could be made. A bubble growing on the  surface w a s  assumed to behave as a 
spherical  vapor bubble r i s i n g  through the  l i q u i d  with a ve loc i ty  equal t o  i t s  
change of radius  with time. This assumption i s  only approximate since the  top  
of a bubble has an upward ve loc i ty  c loser  to dD/dt, while the  remaining por- 
t i o n s  of the  bubble have upward ve loc i t i e s  ranging between and zero. 
A l s o ,  a bubble f r e e l y  r i s i n g  through a l i q u i d  has a wake associated with it, 
and hence the  use i n  the  present case of a drag coe f f i c i en t  obtained from a 
f r e e l y  r i s i n g  bubble w i l l  tend t o  make the  computed drag l a r g e r  than t h a t  actu- 
a l l y  present.  
ing bubble has the  form cd = a/Re where a = 45. The Reynolds number f o r  the  
growing bubble i s  computed as a funct ion of time from 

dD/dt 

A s  discussed l a t e r ,  the  drag coe f f i c i en t  used f o r  a f r e e l y  ris- 

The drag force i s  then obtained from 

Forces Acting on Bubbles After Departure 

Following departure, a bubble acce lera tes  away from the  surface and even- 
t u a l l y  reaches a steady r i s e  veloci ty .  It i s  assumed t h a t  a t  any i n s t a n t  a f t e r  
departure the  drag coef f ic ien t  on a bubble acce lera t ing  away from the surface 
i s  the  same as t h a t  f o r  a bubble having a steady ve loc i ty  equal to the  instan-  
taneous veloci ty  of the  accelerat ing bubble. The drag force i s  then 
(fiDr/8)p~u2C&. 
( l l / l6)pL(nD:/6)  a s  given i n  reference 10, gives the  dynamic equation 

2 Using the apparent m a s s  of the  r i s i n g  bubble, which i s  

The drag coef f ic ien t  depends on the  bubble Reynolds number. For the pres- 
en t  experiments, the  maximum bubble velocity,  which occurred f o r  t he  normal 
grav i ty  case, was about 10 inches per second ( see  f i g .  6(b) ,  p. 1 6 )  while the  
diameter of t he  bubbles a t  departure i s  a maximum of about 0 . 2  inch ( see  f i g .  3, 
p. 15) .  Using the  proper t ies  of  60-percent sucrose so lu t ion  a t  about 220° F 
gives the  Reynolds number For Reynolds numbers i n  t h i s  range, 
t he  da ta  i n  f igure  3 of reference 14  show t h a t  t h e  drag coe f f i c i en t  can be ap- 
proximated by the r e l a t i o n  a = 45 i s  chosen here 
as passing reasonably wel l  through the data. This choice agrees qui te  wel l  
with a = 48 obtained t h e o r e t i c a l l y  by Moore ( r e f .  15). The value C d  = 45/Re 
w a s  s u b s t i t u t e d  i n t o  equation ( 7 )  and the  r e s u l t i n g  expression rearranged i n t o  
the  form 

u D r p z / ~  = 500. 

C d  = a/Re, where a value of 
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This equation i s  in tegra ted  once t o  give the  bubble velocity,  and then, s ince 
u = dx/dt, it i s  in tegra ted  again t o  give the  bubble height above the  surface 
as a funct ion of time: 

u0 - A 
B (1 - e-Bt) + A t  x = x o +  (9) 

where 

and uo and xo are,  respect ively,  the  bubble ve loc i ty  and the  height of the  
center  of the  bubble above the  surface immediately following departure, with 
t = 0 being the  time a t  the  i n s t a n t  of departure.  
l a t e r  f o r  comparisons with the data.  

Equation ( 9 )  w i l l  be used 

EXPERIMErJTAL APPARATTJS 

The apparatus used t o  photograph s ingle  bubbles i n  reduced gravi ty  f i e l d s  
from which bubble growth da ta  were obtained f o r  use i n  the  preceding equations 
i s  described i n  t h i s  section. The apparatus i s  e s s e n t i a l l y  the  same as t h a t  of 
reference 4 and hence w i l l  be described only b r i e f l y .  

Counterweighted Drop Tower 

A s impl i f ied  diagram of the drop tower used t o  obtain reduced gravi ty  
f i e l d s  i s  shown i n  f igu re  l ( a ) .  
mounted descends 12 .5  f e e t  before being decelerated by a sand bed. Various 
grav i ty  f i e l d s  were obtained by using d i f f e r e n t  counterweights to regula te  t he  
r a t e  of descent. No attempt w a s  made t o  overcome a l l  t he  f r i c t i o n  i n  the sys- 
tem and the  r e s u l t i n g  minimum gravi ty  a t t a i n a b l e  w a s  0.014 g,. 

The platform on which the  t e s t  b o i l e r  i s  

Test Boi le r  

The b o i l i n g  t e s t  surface w a s  a t  the  upper end of a copper rod, which w a s  
heated a t  the  base by two 500-watt car t r idge  heaters ,  as shown i n  f igu re  l ( b ) .  
The c i r c u l a r  b o i l i n g  a rea  was surrounded by a 0.030-inch-thick f in ,  which w a s  an 
i n t e g r a l  pa r t  of t he  rod. 
cyl inder  t o  prevent any b o i l i n g  from cracks t h a t  might have developed between 

The e n t i r e  piece w a s  machined from a s ingle  l a rge  
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Bal 

counterweight brake, 

Counterweight cables 

(a) Counterweighted drop tower. (Total height, 22.5 ft.). 

Figure 1. - Experimental apparatus. 
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t h e  rod and t h e  f i n  had they been two separate  pieces. The f i n  a t t enua ted  t h e  
temperature so t h a t  b o i l i n g  d i d  not occur from the f i n  a r e a  or from t h e  O-ring 
j o i n t  a t  t h e  outs ide of t h e  f i n .  Bubbles were t h u s  prevented from r i s i n g  i n  
t h e  foreground, which would have obscured photographs of t h e  t e s t  area. 

The present study attempts t o  dea l  wi th  ideal  bubbles o r ig ina t ing  from 
s ing le  nucleat ion s i t e s  spaced far enough apa r t  t h a t  the bubble columns do not 
i n t e r f e r e  with each o ther .  The number of n a t u r a l  s i t e s  on t h e  b o i l i n g  surface 
w a s  l imi t ed  by pol ishing it with f i n e  emery c l o t h  and then lapping it t o  a 
4-microinch root-mean-square roughness. It w a s  then given a 0.0005-inch-thick 
n i cke l  p l a t i n g  and pol ished wi th  a pas t e  of water and f i n e  alumina. With t h i s  
surface condition and a low heat flux, it w a s  possible  t o  ob ta in  only a f e w  
nucleating bubble columns on t h e  t e s t  area. 

Two 250-watt ca r t r idge  heaters,  mounted i n  copper f i n s  extending through 
t h e  t o p  of the b o i l e r ,  were used t o  maintain t h e  l i q u i d  a t  the s a t u r a t i o n  tem- 
perature.  The b o i l e r  w a s  mounted i n  a box f i l l e d  with powdered i n s u l a t i o n  so 
tha t  only t h e  t e s t  surface and g l a s s  enclosure were exposed. 

Instrumentation 

A s  shown i n  f i g u r e  l ( b ) ,  iron-constantan thermocouples were mounted i n  
0.030-inch holes a t  s eve ra l  pos i t i ons  along t h e  a x i a l  length of t h e  copper rod. 
The temperature gradient  along t h e  rod permitted evaluat ion of t h e  hea t  flux, 
and t h e  surface temperature w a s  obtained by extrapolat ing t h e  temperature varia- 
t i on .  

Photographs were taken w i t h  a 16-millimeter motion-picture camera with l e n s  
extension tubes t o  magnify the f i e l d .  The camera speed w a s  about 3500 frames 
pe r  second, and a 500-cycle, square-wave generator w a s  used t o  place t iming 
marks on t h e  f i l m  every 1/1000 of a second. I l luminat ion w a s  provided by a s in-  
g l e  750-watt s p o t l i g h t  mounted about 5 inches above and 15 inches t o  t h e  r e a r  of 
the t e s t  surface, which gave good d e f i n i t l o n  of t h e  bubble ou t l ines .  A f l a t  
c e l l  containing 1 / 2  inch of water between two pieces  of p l a t e  g l a s s  w a s  placed 
between t h e  l i g h t  and t h e  bo i l e r .  The c e l l  absorbed most of the hea t  from t h e  
l i g h t ,  and thus thermal equilibrium w a s  not d i s tu rbed  when the l i g h t  w a s  turned 
on. 

The f l u i d  temperature was measured w l t h  two thermocouples each mounted in- 
s ide  a s t a i n l e s s - s t e e l  tube 0.0625 inch i n  diameter. One of t h e  tubes w a s  ex- 
tended i n t o  t h e  photographic f i e l d  t o  provide a standard s i z e  f o r  c a l i b r a t i n g  
t h e  bubble measurements. 

Experiment a1 Procedure 

The t e s t  surface was cleaned, polished, and wiped with t i s s u e  and d i s t i l l e d  
w a t e r ,  and t h e  b o i l e r  w a s  then assembled and f i l l e d  w i t h  aqueous-sucrose solu- 
t ion .  The upper heat ing f i n s  were used t o  b r i n g  t h e  so lu t ion  t o  t h e  s a t u r a t i o n  
temperature and t o  d r ive  o f f  dissolved gases. The t e s t  s ec t ion  was heated 
slowly i n  order  t o  a c t i v a t e  only a f e w  nucleat ion s i tes .  The so lu t ion  w a s  
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b o i l e d  f o r  a few hours t o  achieve a s teady-state  condition and f o r  deaeration. 
I f  the  number of ac t ive  s i t e s  w a s  excessive, t h i s  procedure was repeated u n t i l  
a s i t u a t i o n  w a s  obtained i n  which a steady stream of bubbles issued from only 
one or two s i t e s .  

The platform w a s  r a i s e d  i n t o  pos i t ion  and the  counterweight loading ad- 
jus ted  t o  provide t h e  des i red  gravi ty  f i e l d .  
on, and a switch was then closed t h a t  simultaneously s t a r t e d  the  camera and a 
timer. After  a prese t  time i n t e r v a l  (usua l ly  about 1 /4  see) ,  the  t imer a c t i -  
vated a solenoid release,  which dropped the  platform. A s  soon as the  platform 
s t a r t e d  to move, it energized a microswitch i n  t h e  pulse generator c i r c u i t ,  
which placed a l i g h t  f l a s h  on the  f i l m  margin t o  i d e n t i f y  the  beginning of t he  
reduced gravi ty  period. Providing a time delay before the  platform w a s  re -  
leased  permitted nucleat ion under normal grav i ty  conditions t o  be recorded on 
the  f i r s t  pa r t  of each f i l m  so t h a t  comparisons could be made with the  reduced 
gravi ty  period immediately following. The counterweight was then changed t o  
provide another grav i ty  f i e l d ,  and the  runs were continued u n t i l  the  same nu- 
c l e a t i o n  s i t e  had been photographed i n  a l l  t he  d i f f e ren t  grav i ty  f i e l d s .  
t h ree  100-foot r o l l s  of f i l m  were taken f o r  each s i t e  a t  each gravi ty  f i e l d .  
Thermocouple readings were taken only with the  platform a t  r e s t ,  as the  thermal 
capacity of t he  system w a s  too  l a rge  f o r  s ign i f i can t  temperature changes t o  
occur during drops of approximately 1-second d u r a t i m .  

The photographic l i g h t  was turned 

Two o r  

EXPERIMErJTAL RESULTS 

D i s t i l l e d  Water 

Measurements of individual  bubbles growing i n  sa tura ted  d i s t i l l e d  water i n  
reduced gravi ty  a r e  reported i n  reference 4. Some of these r e s u l t s  w i l l  be 
b r i e f l y  summarized here f o r  comparison with the  aqueous-sucrose data. The mea- 
surements were made on s ingle  bubbles growing from s ingle  nucleation s i t e s  with- 
out not iceable  in te r fe rence  from adjacent bubbles. For t h i s  i d e a l  type of bub- 
ble,  it w a s  found t h a t  as gravi ty  w a s  reduced, t he  bubble diameters a t  departure 
increased as f o r  f i e l d s  between 0 .1  and 1 gn, and f o r  lower g r a v i t i e s  
increased a s  g-1/2. The l a t t e r  funct ional  r e l a t i o n  i s  obtained t h e o r e t i c a l l y  
by considering the  bubble departure t o  be governed by a balance of only surface- 
tension and buoyancy forces .  
force appeared t o  be of some s ignif icance i n  changing the  funct ional  form of the  
grav i ty  dependence from g-1/2 t o  g-l-13. 

g-1/3 

For the  g r a v i t i e s  c loser  t o  1 gn, the dynamic 

A s  g rav i ty  w a s  reduced, the  increase i n  bubble departure s i ze  w a s  accom- 
panied by much longer growth times. The growth curves of diameter as a funct ion 
of time a l l  had the  same general  shape with t h e  curves f o r  lower g r a v i t i e s  j u s t  
extending t o  l a r g e r  diameters and times. If the  bubble-diameter v a r i a t i o n  i s  
expressed a s  D - tn, n was found t o  range from 0.5 t o  0.8 f o r  t < 0.02 sec- 
ond and n = 3/8 f o r  t > 0.02 second. 

The contact angle remained e s s e n t i a l l y  constant during growth. Also the  
conta.ct angle d i d  not change as gravi ty  w a s  reduced. The la rge  bubbles i n  re -  
duced gravi ty  were accompanied by l a r g e r  contact  c i r c l e  diameters a t  the  bubble 
base. 

12 



Sucrose-Water Solutions 

After t h e  previous da ta  f o r  water had been obtained, it w a s  desired t o  see 
i f  s i m i l a r  r e s u l t s  would be found for f l u i d s  with d i f f e r e n t  propert ies .  Ethyl  
a lcohol  was t r i e d ,  but  s ing le  bubbles growing from a s ingle  s i t e  could not be 
obtained. A s  soon as a bubble would form, o ther  smaller bubbles would be i n i -  
t i a t e d  around i t s  base and merge with the  o r i g i n a l  bubble. Also, a t  times the  
bubbles were observed t o  s l i d e  along the  surface during growth. 

I n  an e f f o r t  t o  study the  e f f e c t  of f l u i d  viscosi ty ,  an aqueous-sucrose so- 
l u t i o n  w a s  t r i e d  and t h i s  provided d i s t i n c t  s ing le  bubbles. 
sucrose concentration, t h i s  f l u i d  can be severa l  times more viscous than water. 
The densi ty  i s  increased by only a s m a l l  amount, however, and the surface ten-  
s ion remains close t o  t h a t  f o r  water. The r e s u l t s  f o r  t h i s  f l u i d  were consider- 
ably d i f f e ren t  from those for water. These d i f fe rences  w i l l  be explained l a t e r  
i n  terms of the  forces  ac t ing  on the  bubbles. 

Depending on the 

D a t a  were obtained f o r  seven d i f f e ren t  grav i ty  f i e l d s  between 0.014 and 
1.0 gn f o r  a 60-percent gravimetric sucrose solut ion.  For 20- and 40-percent 
solut ions,  data  were obtained i n  f i e l d s  of 0.061, 0.229, and 1.0 gn- 

Reducing the  grav i ty  and increasing the  v i s c o s i t y  subs t an t i a l ly  increased 
When the  the  merging of successive bubbles i n t o  a previously detached bubble. 

vapor m a s s  formed by t h i s  merging had f i n a l l y  r i s e n  s u f f i c i e n t l y  f a r  from the  
surface, t he  next bubble would grow undisturbed t o  i t s  f i n a l  departure s i ze  and 
then detach. Measurements were made only on the  l a t t e r  type of bubble. 

Departure diameters. - Surprisingly,  the  departure diameters of the  ind i -  
vidual  bubbles exhibi ted no d e f i n i t e  grav i ty  dependence. A s  mentioned previ-  
ously, each r o l l  of f i l m  recorded a period of normal grav i ty  followed by the  re-  

TBLE I. - AVERAGE DEPARTITRF: DIAMETERS AND GROWTH TDES 

FOR BUBBLES I N  60-PERCENT GFLAVIIVETRIC AQUEOUS- 

SUCROSE SOLUTION AT NUCLEATION SITE 1 

Percent  of 
Ear th  grav- 

i t a t i o n a l  
f i e l d  

100 
42.9 

100 
22.9 

100 
12.6 

Bubble 
i i  m e t e r  
a t  de- 

iachment, 

i n .  

0.136 
.152 

0.120 
.150 

0.161 
.142 

Do, 

Growth 
time, 

see 

- 
0.015 

.020 

0.013 
,024  

0.015 
.027 

Percent  of 
E a r t h  grav- 
it a t  i o n a l  

f i e l d  

100 
6 . 1  

100 
3.2  

100 
1 . 4  

Bubble 
Liameter 
a t  de- 
;achment, 

i n .  

0.130 
.140 

0.135 
.13? 

0.125 
.201 

DO, 

Growth 
time, 

see 

0.013 
.029 

0.014 
.01? 

0.015 
.033 

duced gravi ty  port ion of t he  
t e s t .  Table I gives some typ- 
i c a l  r e s u l t s  f o r  the  departure 
diameters and growth times 
where each p a i r  of e n t r i e s  was 
obtained from the  da ta  on a 
given r o l l  of film. Each num- 
ber  represents  an average f o r  
severa l  bubbles. An arithme- 
t i c  average w a s  then taken f o r  
a l l  the  departure diameters i n  
normal grav i ty  i n  t a b l e  I and 
gave a n  ove ra l l  average 
normal-gravity bubble s i ze  of 
Do, n = 0.135 inch. Each of 
t he  t a b u l a r  values f o r  reduced 
gravi ty  w a s  then divided by 
DO,n 
s i t e  1 i n  f igure  2. T h i s  f i g -  
ure a l s o  shows data f o r  an- 
o ther  s i t e  i n  60-percent su- 

t o  give the  da ta  f o r  

crose so lu t ion  and some da ta  f o r  severa l  s l t e s  i n  40- and 20-percent solut ions.  
The heat  f luxes  and temperature differences f o r  d i f f e r e n t  t e s t  runs a re  given i n  
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Solution, Sites 
percent 
sucrose 

I 
0 , O  60 1 and 2 

---- DOID,,, = (g/g,)-1/2 

Average curve for water (ref. 4) 

I 

I I I I I I I  10 I I I I I  
.o I .02 -04 -06 -08 .I .2 .4 .6 .8 I 

Fraction of Earth gravity,, g1gn 

Figure 2. - Effect of reduced gravity on diameters of single undisturbed bubbles at 
instant of detachment f rom surface. 

TABLE 11. - mAY' FLUXES AND TEMPERATURF: 

DIFFEREKCES FOR DIFFEmNT TEST RUNS 

S i t e  

1 

2 

3 t o  6 

7 t o  10 

Aqueous - 
suc rose  

so lu t ion ,  
pe rcen t  bj 

weight 

60 

60 

4c 

20 
~ 

Heat t r a n s f e r r e d  
p e r  u n i t  a r e a  
and t ime from 

s o l i d  s u r f a c e  t o  
b o i l i n g  l i q u i d ,  

9, 
B t u / ( h r ) (  sq f t )  

20,500 

18, aoo 

21,900 

21,500 

Temperature 
d i f f e rence ,  
Tw - Tsa t ,  

OF 

30.1 

29. a 

21.4 

19.5 

Bubble growth. - 
Figure 3 is  a loga r i th -  
mic p lo t  of some t y p i c a l  
bubble - d i  ame t e r  var i a - 
t i o n s  with time f o r  
various g r a v i t y  f i e l d s .  
The curves demonstrate 
t he  v a r i a t i o n s  of growth 
behavior t h a t  can be en- 
countered. These types 
of v a r i a t i o n s  also oc- 
curred f o r  bubbles i n  a 
s ingle  grav i ty  f i e l d .  
Apparently no systematic 
v a r i a t i o n  of bubble 
growth with grav i ty  oc- 
curred, although lower- 
ing the  grav i ty  f i e l d  
tended t o  produce longer 
growth times, as a l s o  
i l l u s t r a t e d  i n  t a b l e  I. 
The increase i n  growth 
time w a s  s m a l l  compared 

with t h a t  f o r  water ( r e f .  4 ) ,  where 
bubbles i n  low g r a v i t y  had growth 
t imes an order of magnitude l a r g e r  
than i n  normal gravi ty .  Even a t  the  
lowest g rav i t i e s ,  the  bubbles i n  
60-percent sucrose so lu t ion  s t i l l  had 
growth t imes as short  a s  those for 
bubbles i n  water a t  normal gravi ty .  
The curve shapes i n  f igu re  3 demon- 
s t r a t e  t he  d i f f i c u l t y  i n  t r y i n g  t o  
charac te r ize  bubble growth by a simple 
r e l a t i o n  of t he  form D - tn where 
the  n exponent has a s ingle  value 
throughout t he  bubble l i fe t ime.  

Variation of contact angle and 
. .- 

base width during growth. - The 
surface-tension force  as given by equation (5)  w a s  evaluated frommeasurements 
made of t he  contact angle and the  width of t he  bubble base from the  bubble pro- 
f i l e s  throughout t he  bubble l i fe t ime.  
ent  beneath t h e  bubble, such as has been pos tu la ted  by some invest igators ,  the  
ac tua l  dry  surface a rea  a t  the  bubble base would be smaller than the  measure- 
ments given here. The bubbles i n  sucrose were qui te  spherical  (see p r o f i l e s  i n  
f i g .  4)  and exhibi ted contact angles t h a t  were general ly  smaller than those i n  
water. Because of the  d i f f i c u l t y  i n  measuring the  slope of a curve, t he  abso- 
l u t e  accuracy of the  contact angles i s  approximately +loo. 

If a t h i n  microlayer of l i q u i d  were pres- 

For  two t y p i c a l b u b b l e s ,  t he  contact angle and base widths during growth 
a re  shown i n  f igu re  5 f o r  two d i f fe ren t  g r a v i t y  f i e l d s .  The contact angles ap- 
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Fraction of 
Earth gravity, 

919, 

A 0.014 

. O I I  I I I I I I I I  I I I I I I l l !  ~111 
.0002 .0004 ,001 ,002 .004 .01 .02 .04 

Time, t, 5 %  

Figure 3. -Growth of typical undisturbed bubbles (at site 1 in  60-percent aqueous 
sucrose solution) for five gravity fields. 

Time, 
sec 

Earth gravity 

Time, 
sec 

0. 002 7 ,015, 

Earth gravity 

W 1/16 in. 

.030 -, 0. @I5 .140- 
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12.6 Percent of Earth gravity 12.6 Percent of Earth gravity 

(a) Distilled water. Heat 
transferred from solid 
surface to boiling liquid 
17,700 Btu per hour per 
square foot: temperature 
difference, AT - 17O F. 

(b) Sixty-percent aqueous 
sucrose solution. Heat 
transferred from solid 
surface to boiling liquid, 
20,500 Btu per hour per 
square foot: temperature 
difference, AT - 30. 1' F. 

Figure 4. - Profiles of bubbles during growth in normal and i n  reduced gravity. 
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Time, sec (solid curves) 
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0 .008 -016 -024 .032 

Time, sec (dashed curves) 

Figure 5. - Variation of diameter, contact 
angle, and base width with time for 
bubble growth in  saturated 60-percent 
aqueous sucrose solution at site 1. 
Gravity fields. 1.0 and 0.126 gn. 

a 

peared t o  decrease gradually w i t h  
time during growth and were not 
dependent on the  grav i ty  f i e l d .  

Behavior of bubbles a f t e r  
departure.. - The motion of bub- 
b l e s  a f t e r  departure i s  of i n t e r -  - 

e s t  when studying how the  vapor i s  removed from the  v i c i n i t y  of the  surface 
thereby preventing the  formation of a vapor blanket.  
bubble w i l l  influence the  coalescence of successive bubbles with it and perhaps 
the  t r a n s i t i o n  t o  continuous vapor columns ( r e f .  1 6 ) .  
bubbles i n  reduced gravi ty  f i e l d s  i s  a l so  of i n t e r e s t  w i t h  regard t o  the  col lec-  
t i o n  of vapor i n  space-vehicle l i q u i d - f u e l  tanks. 

The ve loc i ty  of a r i s i n g  

The motion of detached 

The da ta  given here on bubble r i s e  a r e  f o r  a 60-percent aqueous-sucrose so- 
lu t ion .  A t  s i t e  l, bubbles formed i n  r a p i d  succession with e s s e n t i a l l y  zero 
waiting time between them; hence, successive bubbles o f t e n  i n t e r f e r e d  or merged 
with each other.  A t  s i t e  2, however, the  waiting t imes between bubbles were 
long - on the  order of t he  bubble growth time. Hence, the  bubbles r i s i n g  from 
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s i t e  2 were spaced s u f f i c i e n t l y  f a r  apar t  t h a t  da ta  could be obtained for in-  
d iv idua l ly  r i s i n g  bubbles. Figure 6(a)  shows t r a c i n g s  of the  p r o f i l e s  of a s in-  

_ _  - Previous bubble + t-1116 in. 
a t t = O  

Time, t, sec 

g = l .oogn g = 0.229 gn 

(a) Contours of r i s ing  bubbles. 

Time, t, sec n- o.160 

g = 0.032 gn 

Figure 6. - Motion of vapor bubbles after detachment at si te 2 in 60-percent 
aqueous sucrose solution. 

not been observed f o r  t he  reduced g r a v i t y  range. I n  

g l e  bubble a,t s i t e  2 for 
successive times a f t e r  de- 
par ture  f o r  each of t h ree  
grav i ty  f i e l d s .  The d is -  
t o r t i o n  of t he  bubbles i s  
reduced as g r a v i t y  i s  de- 
creased, and f o r  3.2- 
percent of noma1 g r a v i t y  
the  bubble maintains i t s  
spherical  shape. This in -  
d i ca t e s  t h a t  the  drag 
forces  a re  s m a l l  compared 
with the surface tens ion  of 
the  liquid-vapor in t e r f ace  
t h a t  maintains the  spheri-  
c a l  shape. Although t h i s  
behavior would be expected 
from the  c o r r e l a t i o n s  of 
bubble shapes based on da ta  
i n  normal gravi ty ,  it has 
f igure  2 of reference 17, a 

co l lec t ion  of da ta  i s  p l o t t e d  t h a t  gives the  r a t i o  of hor izonta l  t o  v e r t i c a l  d i -  
ameter f o r  f r e e l y  r i s i n g  bubbles as a funct ion of the  EEtvEs number 
E5 = g ( p 1  - pv)DG/a, which i s  a r a t i o  of buoyancy to surface-tension forces  ( r e -  

Fraction of 
Earth gravity, 

I 919" 

A 0.014 
L ,032 
0 .061 
0 ,126 
A .229 
0 1.0 

--- Eq. (91, 0.229 gn 

- --- Eq. (91, 0.032gn 

--- Eq. (91, 0.061 gn 

----- Slope measureti after 
0.46 sec 

0 .02 .04 .06 .08 .IO .I2 .I4 .I 6 . I  8 .20 .22 .24 .26 
Time after detachment, sec 

(b) Rise of center of gravity of bubbles for s ix  gravity fields. 

Figure 6. - Continued. Motion of vapor bubbles after detachment at site 2 in 60-percent aqueous sucrose solution. 
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c iproca l  of t he  Bond number). A t  E'd =l, the  r a t i o  of diameters approaches 
uni ty .  For the  bubble a t  0.032 gn i n  f igure  6(a) ,  E'd-0.13, and, consequently, 
t he  surface tension i s  s u f f i c i e n t l y  la rge  t o  maintain a spherical  bubble shape. 
Hence, a t  low g r a v i t i e s  t h e  behavior of la rge  bubbles t h a t  remain spherical ,  but  
which would become qui te  d i s t o r t e d  i n  normal gravity,  can be observed. 

d i f f e ren t  grav i ty  f i e l d s  i s  shown i n  f igure  6(b),  and as expected, the r i s e  ve- 
l o c i t y  decreases with gravi ty .  The r i s e  immediately following bubble departure 

The r i s e  of t h e  center  of grav i ty  of t y p i c a l  bubbles a f t e r  departure i n  s i x  
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(c) Comparison of r ise of center of gravity of vapor bubbles before and after 
detachment. 

Fiqure 6. - Concluded. Motion of vapor bubbles after detachment at site 2 in 

Frac t ion  
of E a r t h  
gravi ty ,  

g/gn 

0.032 

.061 

.229 

60-percent aqueous sucrose solution. 

Distance from 
heated sur- 

face t o  bubble 
:enter  of grav- 

i t y  a t  in-  
s t a n t  of bub- 
ble  departure, 

XO 

0.090 

. l o 7  

.067 

3ubble r i s e  
r e l o c i t y  i m -  
mediately 
fol lowing 
departure ,  

UO 

1 .15 

2.10 

2. a2 

~ 

Diameter of 
bubble 

while ris- 
i n g  through 

l iqu id ,  
D r  

0. iao 

.214 

.14a 

i s  given i n  d e t a i l  i n  f i g -  
ure 6 (c ) ,  which shows t h a t  
t he  bubbles departed with a 
ve loc i ty  l a r g e r  than t h a t  
immediately preceding de- 
tachment. Evidently, a 
propulsive force,  possibly 
caused by f l u i d  i n e r t i a ,  
p r o j e c t s  the  bubbles from 
the  s u f a c e .  The upward 
ve loc i ty  a t  detachment de- 
creases as gravi ty  i s  re-  
duced, and a t  3 . 2  percent 
gn tends t o  become more 
near ly  continuous with the  
ve loc i ty  before departure. 

These experimentally 
obtained r i s e  r a t e s  a re  
compared with those pre- 
d ic ted  by equation (9 ) ,  
which w a s  evaluated by us- 
ing values of xo and uo 
obtained from f igure  6 ( c ) .  
These experimental values 
a re  l i s t e d  f o r  th ree  typ i -  
c a l  g rav i ty  f i e l d s  i n  the  
t a b l e  a t  the l e f t .  The 
t h e o r e t i c a l  curves i n  f i g -  
ure 6(b)  seem t o  provide a 
reasonable predict ion of 
t he  t rends  i n  the 'da t a .  

When the  e-Bt term i n  equation 
( 9 )  becomes s m a l l ,  the  steady r i s e  
ve loc i ty  i s  achieved. I n  t he  pres- 
en t  experiments, t he  times f o r  
which the  bubbles could be observed 
before r i s i n g  out of t h e  f i e l d  of 
view were in su f f i c i en t  f o r  t h i s  ve- 
l o c i t y  t o  be reached. 
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DISCUSSION OF FORCES ACTING ON BUBBLES DURING GROWTH 

I 

A s  shown by f igu re  2 (p. 14), t he  data  f o r  bubble departure diameters i n  
sucrose so lu t ions  tend t o  c l u s t e r  about the  constant l i n e  
grav i ty  has no d e f i n i t e  e f f e c t  on the  departure s i z e  over t he  range t e s t ed .  
This i s  i n  cont ras t  with the  r e s u l t s  f o r  water t h a t  exhib i ted  a d e f i n i t e  in-  
crease i n  bubble s i z e  as g r a v i t y  w a s  reduced. The independence of departure d i -  
ameter as a funct ion of grav i ty  i n  sucrose so lu t ions  w a s  somewhat unexpected, 
and t h e  reasons f o r  t h i s  behavior were not r e a d i l y  evident.  

Do/D0,, = 1 so t h a t  

One f a c t o r  thought t o  be of possible  s ignif icance was the  condition of t he  
I n  both t h e  t es t s  with d i s t i l l e d  water and with sucrose solu- b o i l i n g  surface.  

t ions,  t he  same cleaning and pol ishing procedure w a s  used. 
b o i l i n g  w a s  l n i t i a t e d  i n  pure d i s t i l l e d  water and da ta  taken, a f t e r  which pre- 
heated high concentration sucrose so lu t ion  was added to obtain the  desired su- 

For some t e s t s ,  

. I 2  ."t ,u- - 

.RW 
M 

PO' 

.- 1.0 
-+- .229 

f 
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(a) Inert ia l ,  buoyancy, and surface-tension forces for 
bubbles in saturated water for 1.0 and 0.229 gn gravity 
fields. Heat transferred from solid surface to boi l ing 
l iquid, 10,900 Btu per hour  per square foot; tempera- 
t u r e  difference, AT = 11. 1' F. 

(b) Inert ia l .  buoyancy, and surface-tension :orces for bubbles 
in saturated water for 0.061 and 0.014 gn gravity fields. 
Heat transferred from solid surface to boi l ing l iquid, 
10.900 Btu per hou r  per square foot; temperature difference, 
AT = 11.1" F. 
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Time, sec (dashed curves) 
(c l  inert ia l .  buoyancy, surface-tension, and drag forces for bubbles 
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growing in 60-percent aqueous sucrose solut ion for 1.0 and 
0.126 gn gravity fields at site 1. 

Figure 8. - Forces acting on growing bubbles. 

erose concentration i n  the  
bo i l e r .  The same nucleat ion 
s i t e s  remained ac t ive  throughout 
t h i s  procedure and, hence, t he  
d i f fe rences  i n  bo i l ing  behavior 
i n  the  two f l u i d s  cannot be a t -  
t r i b u t e d  t o  simple mechanical 
va r i a t ions  of surface conditions 

To a r r i v e  a t  a possible  ex- 
planat ion of t he  bubble departure 
behavior, an examination was made 
of the  fo rces  ac t ing  on a bubble 
during growth on the  surface.  I n  
reference 4 measurements were 
made of bubble diameters, contact 
angles, and base diameters f o r  
sa tura ted  d i s t i l l e d  water i n  sev- 
e r a l  reduced g rav i ty  f i e l d s .  
Some of t he  da ta  have been p lo t -  
t e d  i n  f igu re  7 f o r  use i n  com- 
puting the  fo rces  ac t ing  on the  
bubbles. The buoyancy, surface- 
tension, and i n e r t i a l  fo rces  have 
been computed throughout t h e  
growth per iod as described i n  the  
ana lys i s  and a re  shown i n  f i g -  
ure  8 f o r  both b o i l i n g  water and 
60-percent aqueous- sucrose solu- 
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t ion ;  the  l a t t e r  w a s  computed from f igu re  5 (p.  15) .  

Figure 8(a)  shows the  forces  f o r  t y p i c a l  bubbles growing i n  water f o r  
Earth grav i ty  and a reduced gravi ty  f i e l d  of 
forces  a r e  qui te  s i m i l a r  f o r  t he  two bubbles, and the  only e f f e c t  of t he  grav i ty  
reduction i s  an increase i n  the  t o t a l  growth time. Because .of the  rap id  i n i t i a l  
growth of e i t h e r  bubble, t he  i n e r t i a l  force reaches i t s  maximum ea r ly  i n  the  
growth period. By the  time the  i n e r t i a l  force  reaches i t s  maximum, however, the  
bubble base diameter has increased s u f f i c i e n t l y  t o  produce a surface-tension 
force t h a t  i s  somewhat l a r g e r  than the  i n e r t i a l  force.  Hence, the  maximum in-  
e r t i a l  force  i s  i n s u f f i c i e n t  t o  t e a r  t he  bubble away from the  surface. By pul l -  
ing upward on the  bubble, however, the  i n e r t i a  may impede the  spreading of t he  
bubble base and thus  may have an influence i n  hastening bubble departure by re-  
ta rd ing  the  buildup of the  surface-tension force.  The i n e r t i a l  force then de- 
creases  while t he  buoyancy force continues t o  increase.  The buoyancy force 
eventual ly  surpasses the  surface-tension force  so t h a t  the  bubble must detach. 
Since a f i n i t e  time i s  required f o r  the bubble base t o  form a neck and f i n a l l y  
break loose, t he  bubble continues t o  grow and, a t  departure, the  buoyancy ex- 
ceeds the  surface-tension force.  

0.229 gn. The magnitudes of the  

Figure 8 ( b )  shows the  forces  on bubbles i n  water f o r  the much lower grav i ty  
f i e l d s  0.061 and 0.014 gn. The t o t a l  growth times a re  much longer than  those of 
f igu re  8 ( a ) ,  and, consequently, the  peak i n  the  i n e r t i a l  force occurs ea r ly  r e l -  
a t i v e  t o  the  t o t a l  growth period. A s  i s  shown i n  reference 4, the  shape of the  
bubble growth curves f o r  water were not very dependent on the  g r a v i t a t i o n a l  
f i e l d ,  which f i x e d  only the  time a t  which each growth curve terminated, and, 
hence, the  maximum i n e r t i a l  forces  i n  t h i s  low-gravity range have about t he  same 
magnitude as those i n  f i gu re  8 (a )  f o r  higher g ' s .  A s  i n  f igure  8(a) ,  by the  
time the  i n e r t i a  has reached a maximum, the  surface-tension force has become 
la rge  enough t o  permit the  bubble t o  continue t o  adhere t o  the  surface.  A s  
growth continues, t he  i n e r t i a  decreases and the  bubble base continues t o  spread 
so t h a t  the surface-tension force becomes r a t h e r  la rge .  The buoyancy increases  
slowly because of t he  low-gravity f i e l d ,  but  as the  bubble becomes large,  t he  
buoyancy comes i n t o  balance with the  surface-tension force and departure occurs. 
Hence, f o r  the  i d e a l  type of bubbles photographed here, the  departure i n  t he  
very low-gravity range i s  dependent on the  equilibrium of buoyancy and surface- 
tension forces .  It i reasonable t h a t  the  departure diameter i n  t h i s  range 
should depend on g- l fz  since t h i s  v a r i a t i o n  i s  predicted by a balance of 
surface-tension and buoyancy forces,  a s  i n  the F r i t z  equation. I n  reference 18, 
Semeria observed some bubbles i n  normal-gravity conditions t h a t  grew espec ia l ly  
slowly a f t e r  a shor t  i n i t i a l  period of f a s t e r  growth. These bubbles,, which were 
termed Jakob bubbles, had departure diameters i n  agreement with the F r i t z  equa- 
t ion .  This agreement i s  reasonable because f o r  slowly growing bubbles, depar- 
t u re  would be governed by buoyancy gradually overcoming the  surface-tension 
force.  

Figure 8 ( c )  shows the  forces  computed f o r  two t y p i c a l  bubbles growing i n  
60-percent aqueous-sucrose solut ion.  The two s e t s  of curves a re  s i m i l a r  t o  each 
other.  One of t he  most important f ea tu re s  of these  curves i s  the  la rge  s i ze  of 
the  i n e r t i a l  f o r c e s  i n  comparison with the  surface-tension forces .  This i s  a 
r e s u l t  of the  l a r g e r  growth r a t e s  c h a r a c t e r i s t i c  of the  bubbles i n  sucrose as 
may be r e a l i z e d  by comparing the growth curves i n  f i gu res  5 and 7 (pp. 15 and 
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18, r e spec t ive ly ) .  The l a r g e r  growth r a t e s  may have been p a r t l y  a r e s u l t  of the  
l a r g e r  temperature d i f fe rences  ex i s t ing  f o r  t h e  sucrose solut ions.  A s  a r e s u l t  
of t h e  l a r g e r  growth r a t e s ,  t h e  (dD/dt)' term i n  equation (1) cont r ibu tes  much 
more t o  t h e  i n e r t i a l  force.  For these  bubbles, t h e  l a rge  i n e r t i a l  force  soon 
overcomes t h e  surface- tension force  and, hence, i n i t i a t e s  bubble detachment. 
This detachment occurs when t h e  buoyancy force  i s  s t i l l  s m a l l .  Consequently, 
t h e  departure process i s  domi.nated by i n e r t i a .  A s  g rav i ty  i s  f u r t h e r  reduced, 
t he  buoyancy becomes smaller and i s  even l e s s  important i n  inf luencing depar- 
t u re .  Hence, t h e  departure  of t h e  rap id ly  growing bubbles observed i n  sucrose 
so lu t ions  appears t o  be governed p r inc ipa l ly  by i n e r t i a  and surface-tension 
fo rces  and does not exh ib i t  a grav i ty  dependence. O f  course, t h e  removal of t h e  
detached bubbles from t h e  v i c i n i t y  of t he  heated surface i s  s t i l l  g rav i ty  de- 
pendent. 

From t h e  curves i n  fi.gure 8, t he  following general  observation can then be 
made. Apparently e i t h e r  i n e r t i a  or buoyancy, or sometimes a combination of 
both, can i n i t i a t e  bubble departure.  For tihe bubbles observed i n  d i s t i l l e d  wa-  
t e r ,  the  i n e r t i a l  force  may have had a s m a l l  e f f e c t  f o r  g rav i ty  f i e l d s  near 
normal gravi ty ,  but it became much smaller than the  o ther  fo rces  i n  the.  lower 
g rav i ty  range ( l e s s  than 0 .126  gn) .  Hence, departure  w a s  pr imari ly  the  r e s u l t  
of buoyancy overcoming t h e  surface-tension force,  and, therefore ,  t he  departure 
diameters exhibi ted a pronounced gravi ty  dependence. For the  bubbles observed 
i n  sucrose solut ions,  however, t he  growth r a t e s  were l a rge  and t h e  r e s u l t i n g  i n -  
e r t i a l  forces  were s u f f i c i e n t l y  high t o  cause bubble departure  without t he  buoy- 
ancy force  being s ign i f i can t .  A s  a r e s u l t ,  t h e  departure  i n  sucrose so lu t ions  
w a s  independent of grav i ty .  It must not be i n f e r r e d  t h a t  a l l  bubbles growing 
i n  water, f o r  example, would be of t h e  gravity-dependent type observed here. I f  
a p a r t i c u l a r  nucleat ion s i t e  emitted rap id ly  growing bubbles, these  would most 
l i k e l y  be grav i ty  independent. 

It i s  reported i n  t h e  l i t e r a t u r e  ( r e f .  1 9 )  t h a t  f o r  subcooled bo i l ing  bub- 
b l e s  have sometimes been propel led away from t h e  surface before condensing, even 
f o r  a hor izonta l  surface fac ing  downward. Usually, however, the  bubbles grow 
and col lapse while remaining e i t h e r  a t tached o r  very close t o  t h e  surface.  The 
d i f fe rence  i n  behavior may r e s u l t  from the  r e l a t i v e  magnitudes of t he  i n e r t i a l  
and surface-tension forces  a s  discussed herein.  

A force  tha t  has not been considered i n  t h e  previous discussion i s  the  
viscous drag on a bubble during growth. A s  evidence of t he  influence of drag 
fo rces  during bubble growth, R o l l  ( r e f .  20) observed i n  h i s  experiments t h a t  t h e  
hor izonta l  a x i s  of a bubble growing on a surface w a s  always g rea t e r  than i t s  
v e r t i c a l  axis .  It i s  s t a t e d  t h a t  i f  t he  only force  r e s i s t i n g  upward motion were 
tha t  due t o  surface tension, t h e  v e r t i c a l  a x i s  would be longer than t h e  horizon- 
t a l  ax is .  I n  references 10 and 18, a f la . t t en ing  w a s  noted i n  t he  f i r s t  one- 
t h i r d  t o  one-half of t h e  growth per iod a f t e r  which t h e  v e r t i c a l  a x i s  elongated. 

For the  present study of sucrose solut ions,  the behavior w a s  homewhat sur- 
p r i s i n g  i n  t h a t  t he  bubbles were very near ly  sphe r i ca l  during t h e i r  e n t i r e  
grawth period, as shown i n  f i g u r e  4, even though the  growth t imes were more 
rap id  than those f o r  t he  water data ,  and t h e  v i s c o s i t y  of t h e  sucrose so lu t ion  
was severa l  t imes g rea t e r  than t h a t  f o r  water. I n  an attempt t o  evaluate  wheth- 
e r  drag w a s  s ign i f i can t ,  an approximate drag force  w a s  computed from equation (6).  For 
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bubbles growing i n  water, t h e  force  ranged from 0.004X10’5 to 0 . 0 1 4 ~ 1 0 ’ ~  pound, 
t h e  l a r g e r  value occurr ing e a r l y  i n  the  growth per iod  when the  growth rate was 
large.  For a 60-percent sucrose solut ion,  t h e  drag force  increased t o  as high 
as 0.63~10’~ pound. 
normal g rav i ty  case i n  f igu re  8 ( c ) .  
with t h e  o ther  fo rces  shown i n  f igu re  8 and, hence, were not considered to i n -  
f luence bubble departure  s ign i f i can t ly .  

A t y p i c a l  drag curve f o r  t h e  sucrose da ta  i s  shown f o r  t he  
The values  a r e  general ly  s m a l l  compared 

CONCLUSIONS 

Experimental measurements of s ing le  bubbles growing i n  aqueous-sucrose so- 
l u t i o n s  were obtained i n  reduced gravi ty  f i e l d s  and used t o  compute t h e  fo rces  
on the  bubbles. The da ta  from a previous experiment f o r  bo i l i ng  i n  d i s t i l l e d  
water were analyzed i n  a similar fashion, permi t t ing  t h e  balance of fo rces  f o r  
t h e  d i f f e r e n t  types of bubbles obtained i n  the  two f l u i d s  t o  be compared. The 
following conclusions were made: 

1. Bubble departure  i s  governed by an i n t e r a c t i o n  of buoyancy, i n e r t i a l ,  
and surface- tension fo rces  with viscous drag playing only a minor r o l e  even f o r  
a highly viscous f l u i d  such as 60-percent aqueous-sucrose solut ion.  

2. For a r ap id ly  growing bubble, t he  i n e r t i a l  force  i s  s u f f i c i e n t l y  l a rge  
t o  overcome the  surface- tension force before  buoyancy becomes s ign i f i can t .  I n  
t h i s  instance,  t h e  bubble departure does not depend on gravi ty ,  and the  depar- 
t u r e  diameters a r e  independent of a g rav i ty  reduction. 

3. For a slowly growing bubble, t he  surface- tension force  becomes l a rge  
ea r ly  i n  the  growth per iod and exceeds t h e  maximum i n e r t i a l  force  before i n e r t i a  
can exe r t  any e f f e c t .  The i n e r t i a  then decreases as t h e  bubble growth contin- 
ues, and buoyancy i s  t h e  only force remaining t o  l i f t  t he  bubble from the  sur- 
face.  I n  t h i s  case, s ince bubble departure i s  governed by a gravity-dependent 
force,  t he  departure  diameter i s  g rav i ty  dependent. Thus, depending on t h e  bub- 
b l e  growth r a t e ,  bubble departure does o r  does not exh ib i t  a grav i ty  dependence. 

4. After  departure,  t he  r i s e  of a s ing le  bubble i n  60-percent sucrose solu- 
t i o n  i s  pred ic ted  reasonably wel l  f o r  reduced g rav i ty  f i e l d s  by using the  drag 
coe f f i c i en t  cd = 45/Re, where Re i s  the  bubble Reynolds number. 

5. The r ap id ly  growing bubbles observed i n  60-percent sucrose so lu t ion  l e f t  
the  surface with a ve loc i ty  higher than t h a t  given by the  change of bubble ra- 
d ius  with time immediately before departure.  The v e l o c i t i e s  immediately before  
and a f t e r  departure tended t o  become nearly equal  as the  grav i ty  f i e l d  w a s  r e -  
duced. 

Lewis Research Center 
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